The ‘Lawyer Personality’ and the Five Factor Model: Implications from Personality Neuroscience

Madeleine Deveson
mkdeveson@gmail.com

Follow this and additional works at: http://www.civiljustice.info/neuro
Part of the Other Law Commons, and the Other Neuroscience and Neurobiology Commons

Recommended Citation
http://www.civiljustice.info/neuro/1

This Article is brought to you for free and open access by Civil Justice Research Online. It has been accepted for inclusion in Neuroscience by an authorized administrator of Civil Justice Research Online. For more information, please contact alan.shanks@monash.edu.
The ‘Lawyer Personality’ and the Five Factor Model: Implications from Personality Neuroscience

By Madeleine Deveson

Much has been written about the so-called ‘lawyer personality’.1 Moreover, there is an increasing awareness that lawyers are unusually likely to experience anxiety disorders and depression. Knowledge emerging from the burgeoning field of personality neuroscience suggests that the high prevalence of mental disorders within the law community is at least in part explained by personality factors.

This discussion will commence with an overview of the Five Factor Model of personality, now the prevailing theory in scientific fields. The concepts necessary for an understanding of personality neuroscience will be explored. It will be seen that the personality characteristics so often seen among lawyers and law students correlate with particular aspects of brain biology. Finally, evidence linking the very personality traits found so frequently among lawyers to an increased risk of anxiety and depression will be discussed. It will be contended that personality factors are one of the most important determinants of the unusually high rates of anxiety and depression seen in the law community. The paper will conclude by highlighting deficiencies in the current state of knowledge and suggestions for further research.

I THE FIVE FACTOR MODEL OF PERSONALITY

Over the past several decades, the Five Factor Model has emerged as the pre-eminent theory describing personality variation among individuals, at least within the scientific community.2 The model arose from the work of several, often independent investigators who discovered that the vast array of words used to describe personality could be grouped into five distinct ‘domains’.3 This phenomenon was observed across different cultures and different languages.4 Though domain nomenclature has been the subject of debate, the five domains of personality are usually described as: extraversion, neuroticism, agreeableness, conscientiousness and openness/intellect.

In order to measure personality according to the Five Factor Model, Costa and McRae devised the 240-question NEO-PI-R and its shorter version, the 60-question NEO-FFI.5 Both tests require individuals to answer potentially self-descriptive statements on a five-point scale, with responses ranging from ‘strongly disagree’ to ‘strongly agree’. Results are produced for each of the five domains.

2 The model is increasingly referred to in other fields; for example, Hogan Recruitment devised the ‘Hogan Personality Inventory’ which is based on the domains of the Five Factor Model.
3 Occasionally, descriptors can be placed into two or more categories.
Though these tests have come to represent the ‘gold standard’ for personality assessment within the scientific community, the personalities of lawyers and law students have generally been measured by other means. This helps explain the deficit of material discussing the personality characteristics of lawyers in a Five Factor context. This deficiency makes it relatively more difficult to apply discoveries from the field of personality neuroscience to the legal community. However, there already exists a great deal of data on lawyers’ personalities. When carefully examined, much of this data can be related to the Five Factor model and in turn permit some application of personality neuroscience discoveries to law community.

II PERSONALITY NEUROSCIENCE

‘Personality’ refers to the pattern of thinking, feeling and behaving that varies between individuals but is relatively stable within an individual over time. Personality neuroscience presupposes that all personality differences between human beings arise from biological differences between our brains.

This presupposition should not be confused with the actions of ‘nature’ (genes) and ‘nurture’ (the environment) on the human brain. Critical to an understanding of personality neuroscience is the concept that both genes and the environment act on the brain to create its unique biology. It is the variance in this biology which gives rise to individual traits including personality traits.

Of course, all human brains are laid out according to the same basic ‘plan’. A pre-fabricated house is a useful analogy here. Like pre-fabricated homes built to the same floor plan, all human brains follow the same basic layout. However, pre-fabricated homes may come with different options; for example, some may have a brick façade while others may have timber. A house with a timber façade will look different from one with a weatherboard façade from the very outset, notwithstanding that both houses are built to the same floor plan. By the same token, genes account for the differences between human brains at or around the time of birth.

Keeping with the house analogy, we might assume that over time the home–owners will decorate their houses and may even remodel. We may think of this as analogous to the effects of the environment on the brain. An example of this can be seen in children who develop a ‘lazy eye’, known medically as amblyopia. When a child cannot see out of one eye clearly, let us say the left eye, the part of the brain that was meant to receive information from the left eye undergoes substantial change. Detecting that the information from the left eye is blurry, it abandons the left eye and ‘decides’ to ‘help’ process information from the right eye instead. Left untreated, these changes become permanent, and the child will never see clearly from the left eye again. This demonstrates ‘neuroplasticity’; that is, the ability of the brain to change and adapt depending on environmental circumstances.

Whether the cause is ‘nature’ or ‘nurture’ or some combination, each and every personality difference between human beings arises on account of the unique brain biology of every individual.

7 This could occur, for example, if the child was born with a lens opacity (cataract) in the eye.
8 For more information on this subject, see generally Merrick Moseley and Alistair Fielder, *Amblyopia: A Multidisciplinary Approach* (Butterworth-Heinemann, 2002). Chapter 1 in particular contains a useful overview of neuroplasticity in the amblyopia context.
For present purposes it does not matter whether the differences arise due to genetics or the environment. What matters is an appreciation of the fact that nature and nurture act on the brain biology of all human beings to ensure that each of us is unique, with our own set of characteristics.

III THE LAWYER PERSONALITY AND THE FIVE FACTOR MODEL

Much has been written about the so-called ‘lawyer personality’. As most authors implicitly acknowledge, the data reveal trends among lawyers and law students but do not predict the traits of any one lawyer or law student. For example, the average ‘skepticism’ score of lawyers on the Caliper test is higher than the skepticism scores of 90% of the general population. Some lawyers, however, could be less skeptical than 99% of the population, while others may be more skeptical than 99% of the population. Thus it should be emphasised at the outset that the following data reflect trends only.

The following constitutes a summary of the current state of knowledge in a Five Factor context. This paper will exclusively focus on extraversion and neuroticism, the two domains which are most relevant to the link between lawyers’ personalities and the unusually high prevalence of anxiety and depression within the law community.

A Extraversion

Extraversion is associated with positive feelings, assertiveness, high activity levels, and a preference for engaging with others over spending time alone. Low extraversion is synonymous with introversion. In comparison with more extraverted individuals, introverted individuals require less engagement with the world around them, prefer to think through ideas alone, may prefer a smaller number of very close friends, and tend to eschew opportunities for action and excitement.

In 1993, Richard published data from 3,014 members of the American Bar Association. These members had completed the Meyer Briggs Type Indicator (MBTI), a personality test often used for occupational purposes. It was found that 57% of lawyers were more introverted than extraverted. This finding stood in stark contrast with the finding that 75% of people in the general population were more extraverted than introverted.

9 A popular occupational personality test often used to screen potential employees in the US.
11 Of course, given that personality traits follow a bell-curve, it is quite unlikely than any given lawyer will be less skeptical than 99% of the population.
15 Ibid.
16 Ibid.
17 Ibid.
Introverts’ preference for lone work may explain a later study which revealed that lawyers are more autonomous than 89% of the general population.18 In other words, a random lawyer is far more likely to prefer lone work than a random member of the community. In that article, Richard observed that this preference for lone work made managing lawyers akin to ‘herding cats’.19

In 2010, Hogan Recruitment released a study of 1,937 lawyers using the Hogan Personality Inventory (HPI), a personality test based on the Five Factor Model.20 In the HPI, the domains of ‘ambition’ and ‘sociability’ are based on extraversion. The comparison group, which comprised non-lawyer professionals of similar education and status to lawyers, scored in the 70th percentile for ambition and the 59th percentile for sociability.21 By contrast, lawyers scored in the 50th percentile for each of these domains. In other words, high-ranking non-lawyers were more likely to be ambitious and sociable than lawyers.

In another study it was found that a group of 95 lawyers adjudged as ‘excellent’ lawyers by their peers was more sociable than only 12.8% of the general public; that is to say, the group was less sociable than 87.5% of people in the community at large.22

We have seen that the ‘typical’ lawyer is inclined toward introversion and is likely to prefer working by him or herself. Moreover, this tendency may be exaggerated among highly successful lawyers. In short, multiple studies highlight that lawyers’ are low in extraversion when they are considered as a group.

B \textit{Neuroticism}

Neuroticism is associated with negative emotions such as anxiety, self-consciousness, and irritability.23 Individuals scoring highly on the neuroticism domain tend to be more prone to fear, anger and distress.24 According to the Five Factor Model, there are six components (or ‘sub-domains’) of neuroticism: anxiety, angry hostility, depression, self-consciousness, impulsiveness, and vulnerability.

Though relatively little work has been done with the law community using the Five Factor Model, much of the work already done does in fact relate to one or more of these sub-domains. From this we may make inferences about the likely neuroticism scores of lawyers, pending studies employing the NEO-FFI or NEO-PI-R.

One study conducted with lawyers in the Five Factor context was Hogan Recruitment’s HPI test.25 The HPI has a domain called ‘adjustment’ which is based on the neuroticism domain of the Five

19Ibid.
20Jeff Foster et al, ‘Understanding Lawyers: Why We Do Things We Do’ (Report, Hogan Assessments, 2010) 3.
21Ibid 6.
25Jeff Foster et al, ‘Understanding Lawyers: Why We Do Things We Do’ (Report, Hogan Assessments, 2010) 3.
Factor Model. Adjustment refers to the ‘degree to which a person is steady in the face of pressure, or conversely, moody and self-critical.’ The average ‘adjustment’ score for 1,937 lawyers placed them in the 44th percentile. These results suggest that the average lawyer may score more highly on the neuroticism domain than 56% of the general population. Of course, many lawyers may score ‘zero’ for neuroticism; these are merely averages.

There are further findings which suggest lawyers’ neuroticism scores may be higher than average. Hogan Recruitment’s HDS personality test has an ‘excitable’ domain which, notwithstanding its name, connotes a tendency towards becoming tense and overly critical. The ‘excitable’ domain overlaps substantially with the ‘anger’ sub-domain of Neuroticism, which itself indicates a tendency towards feeling angry.

In the HDS study with 1,898 lawyers, the average lawyer scored in the 68th percentile for ‘excitability’. In other words, in this study, lawyers were on average more prone toward becoming ‘tense and overly critical’ than 68% of the general population. Since angry hostility is a sub-domain of neuroticism, this finding further suggests that lawyers’ scores on the neuroticism domain are likely to be higher than usual.

Pending further work with the law community using the NEO-PI-R or NEO-FFI personality tests, we may surmise that in all likelihood lawyers as a group will score higher than average for neuroticism when compared to members of the general public. This is supported by evidence from existing occupational tests which indicate lawyers’ relatively low degree of ‘adjustment’ and relatively high degree of ‘excitability’.

IV PERSONALITY NEUROSCIENCE, NEUROTICISM AND INTRUSION

* A Neuroscience Correlates of Neuroticism

Like each of the five personality domains, neuroticism tends to be associated with particular variations in brain biology. This phenomenon lies at the heart of personality neuroscience. It should be recalled, however, that the unique biology of a person’s brain is accounted for by both environmental and genetic factors. For example, neuroticism is only around 40% inherited. This

26 Ibid 4.
27 It should be noted that although the ‘adjustment’ domain is based on characteristics which form part of the ‘neuroticism’ domain, the HPI may not measure all the sub-domains of neuroticism. A large-scale study of the law community using the ‘gold-standard’ NEO-PI-R and NEO-FFI is needed to draw firm conclusions here. Moreover, it has been assumed that data applicable to US-based lawyers is applicable to Australian lawyers, when in fact there are some important differences between our communities which may affect results. For example, for at least a century law has been a post-graduate discipline in the US, while here it has predominantly been an undergraduate discipline; this is likely to have some implications for the personality characteristics of people entering law. All US law graduates have completed an LSAT examination prior to law school whereas the LSAT has not traditionally been a requirement of entry to law school in Australia. All practising US lawyers are in effect ‘barristers’ as they must pass a bar exam. All these factors and more may diminish the applicability of US data to the Australian context. Nonetheless, it is virtually inconceivable that US and Australian lawyers do not share some basic attributes which brought them to a career law to begin with.
suggests that the environment plays a crucial role in shaping the brain and inclining it toward neuroticism.

Variations in brain biology may be structural or functional. Functional variations refer to differences in the way brains work. Broadly speaking, functional variations can refer to differences in brain activation, or, alternatively, variations may relate to brain chemicals called neurotransmitters. Structural variations, by contrast, relate to anatomy. For example, certain brain regions are often larger or smaller than usual in the presence of certain personality characteristics.

Serotonin is a chemical made by the brain which is necessary for normal brain function. However, abnormalities in the serotonin system can increase the risk of depression, anxiety disorders, personality disorders, eating disorders and schizophrenia.

Serotonin moves around the brain, binding to receptors. Receptors are akin to ‘locks’ while serotonin molecules are akin to ‘keys’. In the way a lock can only be opened by the appropriate key, serotonin receptors can only be bound by serotonin. When binding occurs, the serotonin molecule is physically bound to the receptor.

Researchers have found that neuroticism is associated with serotonin-binding in regions of the brain associated with normal (and abnormal) personality functioning and behaviour. Further still, it was found that the ‘vulnerability’ sub-domain of neuroticism, which relates to a person’s ability to cope with stress, was most strongly associated with serotonin-binding at the brain locations under investigation. In other words, individuals whose brains showed a higher degree of serotonin-binding in the brain areas of interest were more likely to have difficulty coping with stress.

Neuroticism is not only associated with variations in the way chemicals are used by the brain. Like the other domains, neuroticism is associated with variations in the way the brain processes information. For example, neuroticism is associated with increased brain activation in response to sad faces (though not fearful or happy faces).

Other associations between neuroticism and brain activation have been found. The amygdala and subgenual anterior cingulate (‘subgenual AC’) are known to be hyperactive in both anxiety and depression; see diagram below. Investigators recently found that individuals scoring highly on

30 In most studies brain activation is examined using functional Magnetic Resonance Imaging, or fMRI for short. fMRI is a brain scanner which uses radio waves to examine blood flow to the brain. Increased blood flow indicates increased brain activation. Subjects are generally asked to perform a task while they are inside the MRI apparatus, though occasionally ‘resting-state’ studies have been done as well.
31 See, eg, Claudia Krebs, Neuroscience (Lippincott Williams and Wilkins, 2011) 230.
34 Vibe G Frokjaer et al, ‘Frontolimbic Serotonin 2A Receptor Binding in Healthy Subjects is Associated with Personality Risk Factors for Affective Disorder’ (2008) 63 Biological Psychiatry 569, 571. The frontolimbic region was the specific brain area under investigation.
36 Brian W Haas, R Todd Constable and Turhan Canli, ‘Stop The Sadness: Neuroticism is Associated with Sustained Medial Prefrontal Cortex Response to Emotional Facial Expressions’ (2008) 42 NeuroImage 385, 385. The region which showed increased activation was the medial prefrontal cortex.
neuroticism had increased amygdala and subgenual AC activation when compared to individuals with lower neuroticism when those participants performed an emotion-inducing task. Interestingly, there was an association between the anxious neuroticism sub-domain and the activation pattern found, but not depressive neuroticism. This finding highlights how different personality sub-domains can be driven by different aspects of the brain’s biology. Specifically, it suggests that activation of the amygdala and subgenual AC are more important in determining anxious neuroticism than depressive neuroticism.

Figure 1 shows, inter alia, the right anterior cingulate cortex and the right amygdala.

Finally, there are many structural correlates of neuroticism. For example, neuroticism is associated with reduced gray matter concentration in the amygdala, reduced thickness of the left orbitofrontal cortex and reduced brain volume ratio.

B Neuroscience Correlates of Introversion

On average, an adult male human brain contains 86.1 billion neurons. Neurons are the individual units responsible for transmitting information around the body. For example, neurons can convey sensations, like hot and cold, and they can tell muscles to move.

Brain-Derived Neurotrophic Factor (BDNF) is a chemical produced in the brain which is involved in both the production and protection of the brain’s neurons. The ‘recipe’ for this chemical is coded

38 Ibid 252.
39 Illustration is modified and reproduced from Marije aan het Rot, Sanjay J Mathew and Dennis S Charney, ‘Neurobiological Mechanisms in Major Depressive Disorder’ (2009) 180 Canadian Medical Association Journal 305.
41 Frederico A C Azevedo et al, ‘Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-Up Primate Brain’ (2009) 513 Journal of Comparative Neurology 532, 532. Though the term ‘neuron’ is occasionally used interchangeably with the term ‘nerve’, this is technically inaccurate, since a nerve contains many neurons bundled together. By contrast, a neuron is a single element capable of conducting signals.
for by the BDNF gene. In some individuals, there is a ‘mistake’ in the BDNF gene, which in turn leads to a ‘mistake’ in the resulting BDNF. The ‘faulty’ BDNF is still functional but is nonetheless distinct from the usual form. It is therefore termed a ‘variant’.

Individuals with the variant BDNF have been found to score significantly lower on extraversion than those without the variant.\(^{43}\) Interestingly, the variant was not associated with individuals’ neuroticism scores, suggesting that not all factors modulating introversion also modulate neuroticism.\(^{44}\)

We have seen that neuroticism is often associated with brain changes in areas relating to emotion-processing. For example, these areas may show increased serotonin-binding. Furthermore, there are numerous structural correlates of neuroticism, suggesting that this personality domain, like the others, is associated with changes to brain structure. While less work has been done on introversion (low extraversion), it seems that introversion too is associated with at least some functional brain changes.

V NEUROTICISM, INTROVERSION, ANXIETY, DEPRESSION AND LAWYERS

In 2006 Jylhä and Isometsä examined 441 subjects and found that neuroticism correlated very strongly with both depression and anxiety, and fairly strongly with self-reported lifetime mental disorder.\(^{45}\) This finding is in line with studies before and since linking neuroticism to these mental disorders.\(^{46}\) Introversion has also been linked to certain anxiety disorders as well as chronic depression, though less attention has been given to this relationship.\(^{47}\)

\(^{43}\) Antonio Terracciano et al, ‘BDNF Val66Met is Associated with Introversion and Interacts with 5-HTTLPR to Influence Neuroticism’ (2010) 35 Neuropsychopharmacology 1083, 1083.

\(^{44}\) Ibid 1083.

The prevalence of anxiety disorders and depression among lawyers and law students is higher than in the general community. The following table represents a re-working of Australian data from 2009 involving 741 law students from 13 universities, 924 solicitors and 756 barristers:

<table>
<thead>
<tr>
<th></th>
<th>ANXIETY DAYS</th>
<th>DEPRESSION OCCURRENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law Students</td>
<td>35.2 %</td>
<td>46.0 %</td>
</tr>
<tr>
<td>Solicitors</td>
<td>31.0 %</td>
<td>69.2 %</td>
</tr>
<tr>
<td>Barristers</td>
<td>16.7 %</td>
<td>48.2 %</td>
</tr>
<tr>
<td>General population aged > 17</td>
<td>13.0 %</td>
<td>35.0 %</td>
</tr>
</tbody>
</table>

Table 1: Anxiety and depression among law students, solicitors and barristers

Such stark differences between the law community and general community tell us that there is something different about the people in law. These differences may be exogenous, endogenous or both; that is to say, lawyers and law students may themselves be constitutionally different from most people, or, in the alternative, the environmental pressures faced by lawyers and law students may be unusually stressful.

In all likelihood, both exogenous and endogenous factors are at play. However, there are at least two lines of reasoning based on empirical data which suggest that endogenous factors may be more important than exogenous factors.

To begin with, we may look at data from medical students. This is not an unreasonable comparison, since the environments of law students and medical students are similarly stress-inducing.

48 Norm Kelk et al, ‘Courting the Blues: Attitudes Towards Depression in Australian Law Students and Legal Practitioners’ (Monograph No 1, Brain and Mind Institute at the University of Sydney, 2009), 11–15.
49 Ibid.
50 The authors used the Kessler Psychological Distress Scale (K-10) to measure anxiety. According to this test, scores of 22 and above represent ‘High Distress’. These anxiety statistics are based on scores greater than or equal to 22 on this scale. The data does not necessarily reflect how many individuals were experiencing ‘High Distress’ on the day of the test. Rather, due to the nature of the K-10, this data reflects how many individuals had experienced ‘High Distress’ in the previous thirty days.
51 This data is based on self-responses to a questionnaire. This data does not reflect the proportion of individuals who were experiencing an episode of depression at the time of the questionnaire. Rather, due to the nature of the questions, this data reflects whether individuals had ever experienced an episode of depression.
52 Space constraints do not permit an analysis of the difference between solicitors and barristers. However, a similar effect is seen between General Practitioners and medical specialists; i.e. the medical specialists experience less anxiety and less depression; see Richard P Caplan, ‘Stress, Anxiety and Depression In Hospital Consultants, General Practitioners and Senior Health Service Managers’ (1994) 309 British Medical Journal 1261, 1262. It is possible that ‘self-selection’ may explain this phenomenon, in other words, that those already experiencing high distress may be less likely to take on new and demanding challenges than those in low distress.
53 I will avoid comparing medical students to qualified lawyers since anxiety is known to vary inversely with age. Since the average lawyer is older than the average medical student, such a comparison would be largely invalidated.
<table>
<thead>
<tr>
<th></th>
<th>ANXIETY</th>
<th>DEPRESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law Students</td>
<td>35.2%(^{54})</td>
<td>46.0%(^{55})</td>
</tr>
<tr>
<td>Medical Students</td>
<td>17.8%(^{56})</td>
<td>6.0%(^{57})</td>
</tr>
</tbody>
</table>

Table 2: Anxiety and depression among law and medical students

As can be seen, law students are around twice as likely to experience high emotional distress as medical students. While qualifying as a lawyer is an intense and difficult process, there are few tenable arguments that either a medicine degree or a law degree is more difficult or more stressful than the other. In other words, it seems that the people enrolling law are about twice as likely to go into ‘High Distress’ or ‘Very High Distress’ than others of similar age in similarly stress-inducing environments.

Similar inferences can be drawn from the difference in depression rates among law and medical students, although the prevalence quoted for depression among medical students is derived from a different data set and different questionnaire and so comparisons here should be approached with caution.

The next point helps to explain the foregoing but also forms a further argument in and of itself in support of the proposition that intrinsic properties of lawyers and law students may be a more important determinant of the gap between the law community and non-law community in anxiety and depression rates, as compared with environmental factors.

We have seen that on average, lawyers tend to have lower extraversion and higher neuroticism than usual. Such characteristics are presumably well suited to the practise of law, as evidenced by the constancy over time of these findings.\(^{58}\) Thus, the utility and suitability of these traits is not in question here.

However, do these traits, found so unusually frequently in the law community, help explain the high rate of anxiety disorders and depression within that very community? In the face of the enormous and growing body\(^{59}\) of literature linking neuroticism (and to a lesser extent, introversion) to anxiety disorders and depression, a negative answer to this question is untenable. In other words, the very personality traits which are found unusually often within the law community and which help lawyers flourish in the legal landscape are coincidentally the very same personality traits known to increase lifetime risk of anxiety and depression.

\(^{54}\) Norm Kelk et al, ‘Courting the Blues: Attitudes Towards Depression in Australian Law Students and Legal Practitioners’ (Monograph No 1, Brain and Mind Institute at the University of Sydney, 2009) 12.

\(^{55}\) Ibid 14.

\(^{56}\) Ibid 12.

\(^{57}\) D Newbury-Birch and F Kamali, ‘Psychological Stress, Anxiety, Job Satisfaction, and Personality Characteristics in Preregistration House Officers’ (2001) 77 Postgraduate Medical Journal 109 cited in Lisa Elliott, Jonathon Tan and Sarah Norris, ‘The Mental Health of Doctors: A Systematic Literature Review’ (Report, Beyond Blue, 2010) 37. This figure is based on the Hospital Anxiety and Depression Scale (HADS) and so is not directly comparable to the other three tabulated figures. It has been included in the table, however, because the true figure is probably even lower; it includes all medical students who scored > 8 on the HADS scale, whereas the need for clinical intervention is generally thought to arise at scores of 10 and above. Thus the prevalence of clinical depression among medical students may be even lower than 6.0%.

\(^{59}\) See above n 47.
This connection helps explain the finding that twice as many law students experience anxiety than do medical students. This connection helps explain why lawyers are more likely to experience anxiety and depression than the general population – even though the general population is filled with people who experience stress at work, not just due to stressful occupations but due to other factors like employer-based problems, problems with co-workers, and grievances in respect of pay and conditions.

While law students and lawyers clearly have to work long hours under highly stressful conditions, the same might be said of coal miners, nurses, parents, doctors, emergency workers and so forth; all people who exist in the general population. While a full comparison of stress experienced among different occupational groups is beyond the scope of discussion here, it ought to be intuitively apparent that the difference in anxiety and depression rates between the law community and the general public cannot be explained by environmental factors alone.

From this it should be clear that the personality of the lawyer is a vital contributor to the anxiety and depression rates seen in the legal community. We have seen that lawyers are unusually likely to score lowly on extraversion and highly on neuroticism. It is no coincidence that these precise traits, introversion and neuroticism, are found so often among law students and lawyers, since these traits appear to advantage the lawyer or at least suit the lawyer in his or her practise of the law. It is perhaps little more than an unhappy coincidence that these very traits have been linked decisively to anxiety and depression. Therefore the only logical conclusion as regards the prevalence of anxiety and depression among lawyers is that both intrinsic and environmental factors are important, with a distinct possibility that intrinsic factors are more important.

Further work is needed with law students and lawyers if we are to fully elucidate the points raised here. In particular, a large-scale study examining the ‘lawyer personality’ in the Five Factor context is warranted, as this would enhance the applicability of discoveries from neuroscience. Ideally future studies would involve both a self-reporting component and a questionnaire for friends or relatives of law students and lawyers. As raw data becomes available, statistical analyses will be possible which will enable quantitative estimates of the percentage of anxiety and depression among the law community which is ascribable to personality factors alone.

As we learn more about the ‘lawyer personality’ in the Five Factor context, including more information about lawyers’ scores on the Five Factor sub-domains, we will be able to better understand the factors driving the unusually high rates of anxiety and depression among lawyers. Finally, this may assist law schools and others in the law community to better understand and address these issues, which so often diminish the quality of life of lawyers and law students and which can even be life-threatening.

60 For this research project, an ANOVA (Analysis of Variance) calculation was not possible due to the absence of applicable raw data.
BIBLIOGRAPHY

A Articles/Books/Reports

aan het Rot, Marije, Sanjay J Mathew and Dennis S Charney, 'Neurobiological Mechanisms in Major Depressive Disorder' (2009) 180 Canadian Medical Association Journal 305

Buchanan, Tom, John A Johnson and Lewis R Goldberg, ‘Implementing a Five-Factor Personality Inventory For Use On The Internet’ (2005) 21 European Journal of Psychological Assessment 116

Caplan, Richard P, ‘Stress, Anxiety and Depression In Hospital Consultants, General Practitioners and Senior Health Service Managers’ (1994) 309 British Medical Journal 1261

Costa, Paul T and Robert R McCrae, 'Normal Personality Assessment in Clinical Practice: The NEO Personality Inventory' (1992) 4 Psychological Assessment 5

Countinho, J et al, ‘Functional Brain Resting State Activation Patterns of the Big Five Personality Traits' (2012) 27 European Psychiatry 1

Deckersbach, Thilo et al, ‘Regional Cerebral Brain Metabolism Correlates of Neuroticism and Extraversion' (2006) 23 Depression and Anxiety 133

Denburg, N L et al, 'Poor Decision Making Among Older Adults is Related to Elevated Levels of Neuroticism' (2009) 37 Annals of Behavioral Medicine 164

Fischer, Hakan, Gustav Wik and Mats Fredrikson, 'Extraversion, Neuroticism and Brain Function: A PET Study of Personality' (1997) 23 Personality and Individual Differences 345

Foster, Jeff et al, 'Understanding Lawyers: Why We Do Things We Do' (Report, Hogan Assessments, 2010)

Frokjaer, Vibe G et al, 'Frontolimbic Serotonin 2A Receptor Binding in Healthy Subjects is Associated with Personality Risk Factors for Affective Disorder' (2008) 63 Biological Psychiatry 569

Frustaci, Alessandra et al, 'Meta-Analysis of the Brain-Derived Neurotrophic Factor Gene (BDNF) Val66Met Polymorphism in Anxiety Disorders and Anxiety-Related Personality Traits' (2008) 58 Neuropsychobiology 163

Haas, Brian W et al, 'Emotional Conflict and Neuroticism: Personality-Dependent Activation in the Amygdala and Subgenual Anterior Cingulate' (2007) 121 Behavioral Neuroscience 249

Haas, Brian W, R Todd Constable and Turhan Canli, 'Stop The Sadness: Neuroticism is Associated with Sustained Medial Prefrontal Cortex Response to Emotional Facial Expressions' (2008) 42 NeuroImage 385

Harenski, Carla L, Sang Hee Kim and Stephan Hamann, 'Neuroticism and Psychopathy Predict Brain Activation During Moral and Nonmoral Emotion Regulation' (2009) 9 Cognitive, Affective and Behavioral Neuroscience 1

Jylhä, Pekka and Erkki Isometsä, 'The Relationship of Neuroticism and Extraversion to Symptoms of Anxiety and Depression in the General Population' (2006) 23 Depression and Anxiety 281

Jylhä, Pekka et al, 'Neuroticism, Introversion, and Major Depressive Disorder - Traits, States, or Scars?' (2009) 26 Depression and Anxiety 325

Kelk, Norm et al, ‘Courting the Blues: Attitudes Towards Depression in Australian Law Students and Legal Practitioners’ (Monograph No 1, Brain and Mind Institute at the University of Sydney, 2009)

Kim, Sang Hee et al, 'Resting Brain Metabolic Correlates of Neuroticism and Extraversion in Young Men' (2008) 19 NeuroReport 883

Knutson, Brian, ‘Negative Association of Neuroticism with Brain Volume Ratio in Healthy Humans’ (2001) 50 Biological Psychiatry 685

Krebs, Claudia, Neuroscience (Lippincott Williams and Wilkins, 2011)

Kumari, Veena et al, ‘Neuroticism and Brain Responses to Anticipatory Fear’ (2007) 141 Behavioral Neuroscience 643

Ryman, Sephira G ‘Brain Biochemistry and Personality: A Magnetic Resonance Spectroscopy Study’ (2011) 6(11) PLOS ONE 1

Schmidtke, Jennifer Isom and Wendy Heller, ‘Personality, Affect and EEG: Predicting Patterns of Regional Brain Activity Related to Extraversion and Neuroticism’ (2003) 36 Personality and Individual Differences 717

Sugiura, Motoaki et al, ‘Correlation Between Human Personality and Neural Activity in the Cerebral Cortex’ (2000) 11 NeuroImage 541

Terracciano, Antonio et al, ‘BDNF Val66Met is Associated with Introversion and Interacts with 5-HTTLPR to Influence Neuroticism’ (2010) 35 Neuropsychopharmacology 1083

Uliaszek, Amanda A et al, ‘An Examination of Content Overlap and Disorder-Specific Predictions in the Associations of Neuroticism with Anxiety and Depression’ (2009) 43 Journal of Research in Personality 785

Willis-Owen, Saffron A G et al, ‘The Val66Met Coding Variant of the Brain-Derived Neurotrophic Factor (BDNF) Gene Does Not Contribute Toward Variation in the Personality Trait Neuroticism’ (2005) 58 Biological Psychiatry 738

Wray, N R et al, ‘Association Study of Candidate Variants from Brain-Derived Neurotrophic Factor and Dystrobrevin-Binding Protein 1 with Neuroticism, Anxiety, and Depression’ (2008) 18 Psychiatric Genetics 219
Wright, Christopher I et al, ‘Neuroanatomical Correlates of Extraversion and Neuroticism’ (2006) 16 Cerebral Cortex 1809

Yamasue, Hidenori et al, ‘Gender-Common and –Specific Neuroanatomical Basis of Human Anxiety-Related Personality Traits’ (2008) 18 Cerebral Cortex 46